# New York State Testing Program P-12 Science Learning Standards

**Performance Level Descriptions** 

Physical Science: Physics Fall 2024



THE STATE EDUCATION DEPARTMENT / THE UNIVERSITY OF THE STATE OF NEW YORK / ALBANY, NY 12234

Performance level descriptions (PLDs) help communicate to students, families, educators, and the public the specific knowledge and skills expected of students in order for them to demonstrate proficiency in each Learning Standard for Science. The PLDs serve several purposes in classroom instruction and assessment. They are the foundation of rich discussion around what students need to do to perform at higher levels, and they explain the progression of learning within a subject area. PLDs are also crucial in explaining student performance on the New York State (NYS) assessments since they make a connection between the scale score, the performance level (e.g., meets the expectation of the learning standards), and specific knowledge and skills typically demonstrated by students achieving at that level.

### **Policy Definitions of Performance Levels**

For each subject area, students perform along a continuum of the knowledge and skills necessary to meet the demands of the Learning Standards for Science. There are students who meet the expectations of the standards with distinction, students who fully meet the expectations, students who minimally meet the expectations, students who partially meet the expectations, and students who do not demonstrate sufficient knowledge or skills required for any performance level. New York State assessments are designed to classify student performance into one of five levels based on the knowledge and skills the student has demonstrated. These performance levels for the Regents level science test are defined as:

# NYS Level 5

Students performing at this level meet the expectations of the Science Learning Standards with distinction for Physical Science: Physics.

#### NYS Level 4

Students performing at this level fully meet the expectations of the Science Learning Standards for Physical Science: Physics. They are likely prepared to succeed in the next level of coursework.

#### NYS Level 3

Students performing at this level minimally meet the expectations of the Science Learning Standards for Physical Science: Physics. They meet the content area requirements for a Regents diploma but may need additional support to succeed in the next level of coursework.

#### NYS Level 2

Students performing at this level partially meet the expectations of the Science Learning Standards for Physical Science: Physics. Students with disabilities performing at this level meet the content area requirements for a local diploma but may need additional support to succeed in the next level of coursework.

# NYS Level 1

Students performing at this level demonstrate knowledge, skills, and practices embodied by the Science Learning Standards for Physical Science: Physics below that of a Level 2.

#### How were the PLDs developed?

Following research-based best practice for the development of PLDs, the number of performance levels and their definitions were specified prior to the articulation of the full descriptions. The New York State Education Department (NYSED) convened a group of NYS science educators to develop the initial draft PLDs for Physical Science: Physics. In developing PLDs, participants considered policy definitions of the performance levels and the knowledge and skill expectations for each grade level in the Science Learning Standards. Once they established the appropriate knowledge and skills from a particular standard for NYS Level 4 (fully meet), panelists worked together to parse the knowledge and skills across the other performance levels in such a way that the progression of the knowledge and skills was clearly seen moving from Level 1 to Level 5. This process was repeated for all of the standards within the course. The draft PLDs then went through additional rounds of review and edits from a number of NYS-certified educators, content specialists, and assessment experts under NYSED supervision.

# How can the PLDs be used in Instruction?

The PLDs, which differentiate and stratify the overall continuum of knowledge and skills defined by the Learning Standards into five distinct levels of learning, should be used as guidance by educators. NYSED encourages the use of the PLDs for a variety of purposes, including differentiating instruction to maximize individual student outcomes, creating formative classroom assessments and rubrics to help identify target performance levels for individuals or groups of students, and tracking student growth along the proficiency continuum as described by the PLDs. The knowledge and skills shown in the PLDs describe typical performance and progression. However, the order in which students will demonstrate the knowledge and skills within and between performance levels may be staggered (i.e., a student who predominantly demonstrates Level 3 knowledge and skills may simultaneously demonstrate certain knowledge and skills indicative of Level 4). Although the ranges of skills expected of students at each performance level are detailed in the PLDs, specific science concepts will be elaborated and expanded as those skills are applied in the science classroom. Because the Learning Standards for science encompass the Science and Engineering Practices (SEP), Disciplinary Core Ideas (DCI), and Crosscutting Concepts (CCC), each of them must be examined in depth. The integration of these three dimensions provides students with a context for the content of science, a sense of how science knowledge is acquired and understood, and a sense of how the sciences are connected through concepts that have universal meaning across the disciplines.

# How are the PLDs used in Assessment?

PLDs are essential in setting performance standards (i.e., "cut scores") for New York State assessments. Standard setting panelists use PLDs to determine the expectations for students to demonstrate the knowledge and skills necessary to *just barely* attain a Level 2, Level 3, Level 4, or Level 5 on the assessment. This knowledge and these skills drive discussions that influence the panelists as they recommend the cut scores on the assessment. PLDs are also used in question development. Question writers are assigned to write questions that draw on the specific knowledge and skills from a PLD. This ensures that each test has questions that measure student performance all along the continuum. Questions on the Science Regents Examinations will emphasize skills from the PLDs that can be measured via written assessment. Teachers can use the PLDs in the same manner when developing both formative and summative classroom assessments. Tasks that require students to demonstrate knowledge and skills from the PLDs can be tied back to the performance level with which the PLD is associated, providing the teacher with feedback about the students' progress as well as a wealth of other skills that the students are likely able to demonstrate (or can aspire to in the case of the nexthighest PLD).

| <b>Topic and PE</b>  | NYS Level 5           | NYS Level 4        | NYS Level 3                      | NYS Level 2                      | NYS Level 1                |
|----------------------|-----------------------|--------------------|----------------------------------|----------------------------------|----------------------------|
|                      | Develop and use       | Develop models     | Complete a model that            | Given a model or data,           | Given a model or data,     |
|                      | models to             | to illustrate the  | demonstrates the release of      | explain why energy is            | identify, from the choices |
|                      | demonstrate the scale | changes in the     | energy during fission,           | released during a nuclear        | provided, evidence to      |
|                      | of energy released    | composition of     | and/or fusion, and/or            | process, <u>or</u> given a model | support that energy is     |
| Structure and        | during nuclear        | the nucleus of the | radioactive decay, <u>or</u> use | or data, relate the              | released during a nuclear  |
| <b>Properties of</b> | processes including   | atom and the       | model(s), data, and/or           | difference in nuclear mass       | process.                   |
| Matter               | fission, fusion, and  | energy released    | information to compare the       | to the energy released           |                            |
|                      | radioactive decay.    | during the         | scale of energy released         | (binding energy) in a            |                            |
| HS-PS1-8             |                       | processes of       | during a nuclear process to      | nuclear process.                 |                            |
|                      |                       | fission, fusion,   | other kinds of energy            | _                                |                            |
|                      |                       | and radioactive    | transformations.                 |                                  |                            |
|                      |                       | decay.             |                                  |                                  |                            |
|                      |                       |                    |                                  |                                  |                            |

| Plan and conduct an<br>investigation toAnalyze data to<br>support the claimAnalyze and/or i<br>data for an object                                                                                                                                                            | nterpret Analyze and/or interpret Identify the data or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>support a claim that describes the mathematical relationships among the net force on a maceperation, and make predictions using the results of the investigation by applying Newton's Laws of Motion.</li> <li>Forces and Interactions</li> <li>HS-PS2-1</li> </ul> | t acted<br>ccd force(s)data for an object acted<br>upon by balanced forces by<br>applying the mathematical<br>relationships described in<br>Newton's Laws of Motion<br>to quantify the force(s)<br>acting on a macroscopic<br>or the<br>e object, or determine the net object,<br>r interpret<br>t acted<br>ccd force(s)information that supports<br>the claim that Newton's<br>Second Law of Motion<br>describes the<br>mathematical<br>relationship among the<br>net force on a<br>macroscopic object, its<br>mass, and/or its<br>acceleration of<br>t acted<br>ccd force(s)information that supports<br>the claim that Newton's<br>Second Law of Motion<br>describes the<br>mathematical<br>relationship among the<br>net force on a<br>macroscopic object, its<br>mass, and/or its<br>acceleration of<br>the object, <b>or</b> analyze<br>and/or interpret data for an<br>object acted upon by<br>balanced forces using<br>mathematical<br>representations<br>(kinematics) to determine<br>quantities describing<br>a<br>motion (with or without<br>direction) including the<br>acceleration, velocity,information that supports<br>acceleration of<br>acceleration of<br>acceleration of<br>accelerationsthe data for an<br>object acted upon by<br>balanced forces using<br>mathematical<br>motion (with or without<br>direction) including the<br>acceleration, velocity,information that supports<br>acceleration of<br>acceleration of<br>acceleration of a<br>macroscopic object's<br>motion for an object<br>acceleration of a<br>cor unbalanced force(s). |

| <b>Topic and PE</b> | NYS Level 5             | NYS Level 4        | NYS Level 3                        | NYS Level 2                  | NYS Level 1                      |
|---------------------|-------------------------|--------------------|------------------------------------|------------------------------|----------------------------------|
|                     | Collect and analyze     | Use mathematical   | Given data and/or a model,         | Given data and/or a model,   | Given data and/or a              |
|                     | data and use            | representations to | use a mathematical                 | use a mathematical           | model, use a                     |
|                     | mathematical            | support the claim  | representation for the             | representation to determine  | mathematical                     |
| Forces and          | representations to      | that the total     | conservation of momentum           | the total momentum, with     | representation for               |
| Interactions        | support the claim that  | momentum of a      | to determine the mass              | or without direction, of a   | momentum to identify             |
|                     | the total momentum      | system of objects  | and/or velocity of an object       | system of objects before or  | the mass, or the                 |
| HS-PS2-2            | of a system of objects  | is conserved       | before or after an interaction     | after an interaction when    | momentum (with or                |
|                     | is conserved when       | when there is no   | between two objects when           | there is no net force on the | without direction), or the       |
|                     | there is no net force   | net force on the   | there is no net force on the       | system.                      | velocity/speed of an             |
|                     | on the system.          | system.            | system.                            |                              | object.                          |
|                     | Apply scientific and    | Apply scientific   | Apply scientific and               | Use an algebraic             | Identify a device from           |
|                     | engineering ideas to    | and engineering    | engineering ideas to design        | representation to describe   | those provided that              |
|                     | design and build a      | ideas to design,   | a device that reduces the          | how a given device affects   | reduces the force on a           |
|                     | device that minimizes   | evaluate, and      | force on a macroscopic             | the force, time, change in   | macroscopic object               |
|                     | the force on a          | refine a device    | object during a collision and      | momentum, and/or change      | during an interaction, <u>or</u> |
|                     | macroscopic object      | that minimizes     | explain how this device            | in velocity of a             | identify an explanation          |
|                     | during a collision and  | the force on a     | reduces the force, <u>or</u> given | macroscopic object during    | from those provided for          |
|                     | analyze the forces      | macroscopic        | the design of a device that        | an interaction.              | how a given device               |
|                     | acting on the object    | object during a    | minimizes the force on a           |                              | reduces the force on a           |
|                     | during the collision,   | collision.         | macroscopic object, apply          |                              | macroscopic object.              |
| Forces and          | and use this analysis   |                    | scientific and engineering         |                              |                                  |
| Interactions        | to refine the device to |                    | ideas to describe how this         |                              |                                  |
|                     | further minimize the    |                    | device can be refined to           |                              |                                  |
| HS-PS2-3            | force of impact         |                    | reduce this force, <u>or</u> given |                              |                                  |
|                     | during the collision.   |                    | data for a mechanism               |                              |                                  |
|                     |                         |                    | designed to minimize the           |                              |                                  |
|                     |                         |                    | force on a macroscopic             |                              |                                  |
|                     |                         |                    | object, evaluate the               |                              |                                  |
|                     |                         |                    | effectiveness of the               |                              |                                  |
|                     |                         |                    | mechanism based upon               |                              |                                  |
|                     |                         |                    | given constraints.                 |                              |                                  |
|                     |                         |                    |                                    |                              |                                  |
|                     |                         |                    |                                    |                              |                                  |
|                     |                         |                    |                                    |                              |                                  |

| <b>Topic and PE</b> | NYS Level 5                        | NYS Level 4                        | NYS Level 3                                      | NYS Level 2                           | NYS Level 1                                    |
|---------------------|------------------------------------|------------------------------------|--------------------------------------------------|---------------------------------------|------------------------------------------------|
|                     | Use mathematical                   | Use mathematical                   | Using mathematical                               | Given data and/or                     | Given data, information,                       |
|                     | representations of                 | representations of                 | representations of Newton's                      | model(s), describe how                | or a model, draw or                            |
|                     | Newton's Law of<br>Gravitation and | Newton's Law of<br>Gravitation and | Law of Gravitation or<br>Coulomb's Law, describe | factor(s) affect the gravitational or | identify the direction,<br>with or without the |
|                     | Coulomb's Law to                   | Coulomb's Law                      | and/or predict the                               | electrostatic force(s) acting         | magnitude, of the                              |
|                     | compare the                        | to describe and                    | gravitational force(s) or                        | on two objects, <u>or</u> describe    | gravitational force(s) or                      |
|                     | magnitudes and                     | predict the                        | field, or electrostatic                          | how factor(s) affect the              | field, or electrostatic                        |
|                     | directions of the                  | gravitational and                  | force(s) or field associated                     | gravitational or                      | force(s) or field, <u>or</u>                   |
|                     | gravitational and                  | electrostatic                      | with an object or a system                       | electrostatic field between           | determine the magnitude                        |
|                     | electrostatic forces,              | forces between                     | of two objects, <u>or</u> describe               | two objects.                          | of the gravitational                           |
|                     | and predict changes                | objects.                           | and/or predict the                               |                                       | force(s) or field, or                          |
|                     | in those forces when               |                                    | magnitude of the factor(s)                       |                                       | electrostatic force(s) or                      |
|                     | more than one                      |                                    | that result in the given forces or fields.       |                                       | field.                                         |
|                     | variable is changed.               |                                    | forces or fields.                                |                                       |                                                |
| Forces and          |                                    |                                    |                                                  |                                       |                                                |
| Interactions        |                                    |                                    |                                                  |                                       |                                                |
|                     |                                    |                                    |                                                  |                                       |                                                |
| HS-PS2-4            |                                    |                                    |                                                  |                                       |                                                |
|                     |                                    |                                    |                                                  |                                       |                                                |
|                     |                                    |                                    |                                                  |                                       |                                                |
|                     |                                    |                                    |                                                  |                                       |                                                |
|                     |                                    |                                    |                                                  |                                       |                                                |
|                     |                                    |                                    |                                                  |                                       |                                                |
|                     |                                    |                                    |                                                  |                                       |                                                |
|                     |                                    |                                    |                                                  |                                       |                                                |
|                     |                                    |                                    |                                                  |                                       |                                                |
|                     |                                    |                                    |                                                  |                                       |                                                |
|                     |                                    |                                    |                                                  |                                       |                                                |
|                     |                                    |                                    |                                                  |                                       |                                                |
|                     |                                    |                                    |                                                  |                                       |                                                |
|                     |                                    |                                    |                                                  |                                       |                                                |

| <b>Topic and PE</b> | NYS Level 5                                                                                                                                                                                                                                                                                   | NYS Level 4                                                                                                                                                                                                                     | NYS Level 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NYS Level 2                                                                                                                                                                                                                        | NYS Level 1                                                                                                                         |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                     | NYS Level 5<br>Plan and conduct an<br>investigation to<br>provide evidence that<br>changes in specific<br>physical quantities<br>qualitatively affect<br>the magnetic field<br>produced by an<br>electric current and<br>the electric current<br>produced by a<br>changing magnetic<br>field. | NYS Level 4<br>Plan and conduct<br>an investigation<br>to provide<br>evidence that an<br>electric current<br>can produce a<br>magnetic field<br>and that a<br>changing<br>magnetic field<br>can produce an<br>electric current. | <b>NYS Level 3</b><br>Plan and conduct an<br>investigation to provide<br>evidence that an electric<br>current can produce a<br>magnetic field or that a<br>changing magnetic field can<br>produce an electric current,<br><b>or</b> given a plan, conduct an<br>investigation to provide<br>evidence that an electric<br>current can produce a<br>magnetic field and that a<br>changing magnetic field can<br>produce an electric current,<br><b>or</b> given a description of an<br>investigation, evaluate if the<br>investigation will provide<br>evidence to support the<br>claim that an electric current<br>can produce a magnetic<br>field or that a changing<br>magnetic field can produce<br>an electric current, <b>or</b> revise<br>or complete a plan for an<br>investigation that would<br>provide evidence that an<br>electric current can produce<br>a magnetic field or that a<br>changing magnetic field can<br>produce an electric current. | NYS Level 2         Given experimental data or information, identify the evidence that supports the claim that an electric current can produce a magnetic field or that a changing magnetic field can produce an electric current. | NYS Level 1<br>Identify the cause and<br>effect relationship<br>between an electric<br>current and a magnetic<br>field in a system. |

| <b>Topic and PE</b>                | NYS Level 5                                                                                                                                                                                                                                                                                                                                           | NYS Level 4                                                                                                                                                                                                                                                       | NYS Level 3                                                                                                                                                                                                                                              | NYS Level 2                                                                                                                                                                                                                                                                                                                                                                              | NYS Level 1                                                                                                                                                                                                                                                                                              |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Topic and PE<br>Energy<br>HS-PS3-1 | NYS Level 5<br>Create a<br>computational model<br>to calculate the<br>change in the energy<br>of one component in<br>a system when the<br>change in energy of<br>the other<br>component(s) and<br>energy flows in and<br>out of the system are<br>known, and apply the<br>model to real-world<br>data to evaluate the<br>limitations of the<br>model. | NYS Level 4<br>Create a<br>computational<br>model to<br>calculate the<br>change in the<br>energy of one<br>component in a<br>system when the<br>change in energy<br>of the other<br>component(s) and<br>energy flows in<br>and out of the<br>system are<br>known. | NYS Level 3         Given a model or         information for a system,         calculate the energy change         for the system and/or a         physical quantity associated         with an energy         transformation within the         system. | NYS Level 2         Given a model or         information (e.g., kinetic         energy, change in potential         energy, work, or power) for         a macroscopic object,         calculate a physical         quantity (e.g., mass, speed,         change in height, spring         constant, etc.) associated         with that form of energy         for the macroscopic object. | NYS Level 1         Given a model or         information for a         macroscopic object,         calculate the kinetic         energy, change in         gravitational potential         energy, spring potential         energy, work, or power         associated with a         macroscopic object. |

| <b>Topic and PE</b> | NYS Level 5                                                                                                                                                                                                                                                                                                                                                                                              | NYS Level 4                                                                                                                                                                                                                                                                                                          | NYS Level 3                                                                                                                                                                                                                   | NYS Level 2                                                                                                                                                                                     | NYS Level 1                                                                                                                                                                                                     |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Energy<br>HS-PS3-2  | NYS Level 5<br>Develop and use<br>multiple models to<br>illustrate that energy<br>at the macroscopic<br>scale can be<br>accounted for as a<br>combination of<br>energy associated<br>with the motions of<br>particles (objects) and<br>energy associated<br>with the relative<br>position of particles<br>(objects), and revise<br>the models to reflect<br>one or more changes<br>in system parameters. | NYS Level 4<br>Develop and use<br>models to<br>illustrate that<br>energy at the<br>macroscopic scale<br>can be accounted<br>for as a<br>combination of<br>energy associated<br>with the motions<br>of particles<br>(objects) and<br>energy associated<br>with the relative<br>position of<br>particles<br>(objects). | NYS Level 3<br>Revise or complete a<br>model(s) to illustrate that<br>energy at the macroscopic<br>scale is a combination of<br>energies associated with the<br>motion of and relative<br>position of particles<br>(objects). | NYS Level 2         Given a model and/or         information, predict energy         transfers associated with         the motion and relative         position of particles         (objects). | NYS Level 1         Given a model and/or         information, identify the         form(s) of energy         associated with motion         of and/or relative         position of particles         (objects). |

| <b>Topic and PE</b> | NYS Level 5                                                                                                                                                                                                                                                                                                                                                                                                                      | NYS Level 4                                                                                                                                                                                                                                                                                                       | NYS Level 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYS Level 2                                                                                                                                                                                                                                                                                                                                    | NYS Level 1                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Energy<br>HS-PS3-3  | Design, build, and<br>refine a device that<br>works within given<br>constraints to convert<br>one form of energy<br>into another form of<br>energy, and explain<br>how a similar device<br>could be used to<br>solve a real-world<br>problem using                                                                                                                                                                               | Design, build,<br>and refine a<br>device that works<br>within given<br>constraints to<br>convert one form<br>of energy into<br>another form of<br>energy.                                                                                                                                                         | Evaluate and/or refine a<br>given device that converts<br>one form of energy into<br>another form of energy in<br>order to meet given<br>constraints, <u>or</u> given a<br>device or a model of a<br>device that converts one<br>form of energy into another<br>form of energy, calculate<br>the device's efficiency.                                                                                                                                                                                                                                                | Given a device or a model<br>of a device that converts<br>one form of energy into<br>another form of energy,<br>evaluate the energy output<br>and the energy input or<br>propose a refinement to<br>improve efficiency, <u>or</u><br>given two or more devices<br>or models of devices that<br>convert one form of energy                      | Given a device or model<br>of a device that converts<br>one form of energy into<br>another form of energy,<br>identify the design<br>variables and/or the<br>energy transformations.                                                                                                                                                                                                                                                              |
|                     | student-generated sources of evidence.                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to another form of energy,<br>evaluate the energy output<br>for the same energy input.                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Energy<br>HS-PS3-4  | Plan and conduct an<br>investigation to<br>provide evidence that<br>the transfer of<br>thermal energy, when<br>two components of<br>different temperatures<br>are combined within<br>a closed system,<br>results in a more<br>uniform energy<br>distribution among<br>the components in the<br>system. Analyze and<br>interpret the data to<br>verify the second law<br>of thermodynamics.<br>Evaluate the<br>limitations on the | Plan and conduct<br>an investigation<br>to provide<br>evidence that the<br>transfer of<br>thermal energy,<br>when two<br>components of<br>different<br>temperatures are<br>combined within<br>a closed system,<br>results in a more<br>uniform energy<br>distribution<br>among the<br>components in<br>the system | Given data from an<br>investigation involving the<br>combination of two<br>components of different<br>temperatures within a closed<br>system, explain how the<br>data provides evidence to<br>support that thermal energy<br>is transferred between the<br>objects in the system, which<br>results in a more uniform<br>energy distribution among<br>the components in the<br>system, <u>or</u> use mathematical<br>thinking to determine or<br>describe the amount of<br>thermal energy transferred<br>by each component within<br>the system, <u>or</u> complete a | Given data from an<br>investigation or<br>information involving two<br>components of different<br>temperatures combined<br>within a closed system, use<br>mathematical<br>representations to<br>determine the mass,<br>specific heat for one<br>component in the system,<br>or the change in<br>temperature of one<br>component in the system. | Given information<br>involving two<br>components of different<br>temperatures combined<br>within a closed system,<br>relate the energy<br>transferred to the<br>temperature change,<br>mass, or specific heat for<br>one of the components in<br>the system, <u>or</u> given<br>information involving<br>the change in energy of<br>an object, determine the<br>energy change,<br>temperature change,<br>mass, or specific heat of<br>the object. |

| <b>Topic and PE</b> | NYS Level 5           | NYS Level 4      | NYS Level 3                     | NYS Level 2 | NYS Level 1 |
|---------------------|-----------------------|------------------|---------------------------------|-------------|-------------|
|                     | precision of the data | (second law of   | plan for an investigation       |             |             |
|                     | and inherent          | thermodynamics). | that would provide evidence     |             |             |
|                     | uncertainties in the  |                  | that the transfer of thermal    |             |             |
|                     | investigation.        |                  | energy, when two                |             |             |
|                     |                       |                  | components of different         |             |             |
| Energy              |                       |                  | temperatures are combined       |             |             |
|                     |                       |                  | within a closed system,         |             |             |
| HS-PS3-4            |                       |                  | results in a more uniform       |             |             |
|                     |                       |                  | energy distribution among       |             |             |
| Continued           |                       |                  | the components in the           |             |             |
|                     |                       |                  | system, <u>or</u> given a plan, |             |             |
|                     |                       |                  | conduct an investigation to     |             |             |
|                     |                       |                  | provide evidence that the       |             |             |
|                     |                       |                  | transfer of thermal energy,     |             |             |
|                     |                       |                  | when two components of          |             |             |
|                     |                       |                  | different temperatures are      |             |             |
|                     |                       |                  | combined within a closed        |             |             |
|                     |                       |                  | system, results in a more       |             |             |
|                     |                       |                  | uniform energy distribution     |             |             |
|                     |                       |                  | among the components in         |             |             |
|                     |                       |                  | the system.                     |             |             |

| <b>Topic and PE</b> | NYS Level 5              | NYS Level 4         | NYS Level 3                                          | NYS Level 2                      | NYS Level 1                                      |
|---------------------|--------------------------|---------------------|------------------------------------------------------|----------------------------------|--------------------------------------------------|
|                     | Develop and use          | Develop and use     | Complete a model of two                              | Given a model or                 | Given a model or                                 |
|                     | multiple types of        | a model of two      | objects interacting through                          | information about two            | information about two                            |
|                     | models of two or         | objects             | electric or magnetic fields to                       | objects interacting through      | objects interacting                              |
|                     | more objects             | interacting         | show the changes in energy                           | an electric field, use a         | through an electric field,                       |
|                     | interacting through      | through electric    | of the objects due to the                            | mathematical                     | use a cause and effect                           |
|                     | electric or magnetic     | or magnetic fields  | interaction, <u>or</u> given a                       | representation to determine      | relationship to                                  |
|                     | fields to illustrate the | to illustrate the   | model of two objects                                 | the charge on an object or       | qualitatively identify                           |
|                     | forces between           | forces between      | interacting through an                               | the potential difference         | how changes to the                               |
|                     | objects and the          | objects and the     | electric field, explain why                          | when the position of the         | charges or position of                           |
|                     | changes in energy of     | changes in energy   | or show how the energy                               | object in the electric field     | these charged objects                            |
|                     | the objects due to the   | of the objects due  | stored in the electric field                         | changes, <u>or</u> given a model | change the energy of the                         |
|                     | interaction.             | to the interaction. | changes when the position                            | or information about two         | system due to the                                |
|                     |                          |                     | of the object(s) changes, <u>or</u>                  | objects interacting through      | interaction, <u>or</u>                           |
|                     |                          |                     | given a model of an                                  | magnetic fields, draw the        | given a model or                                 |
|                     |                          |                     | object(s) interacting through                        | magnetic force or magnetic       | information about two                            |
| Б                   |                          |                     | a magnetic field, explain                            | field, or identify the           | objects interacting                              |
| Energy              |                          |                     | why or show how the                                  | relative strength and/or         | through an electric field,<br>use a mathematical |
|                     |                          |                     | magnetic force, magnetic                             | direction of the magnetic        |                                                  |
| HS-PS3-5            |                          |                     | field, and/or energy stored<br>in the magnetic field | force or magnetic field.         | representation to                                |
|                     |                          |                     | changes when the position                            |                                  | describe the change in electric potential energy |
|                     |                          |                     | of the object(s) changes.                            |                                  | when the position of the                         |
|                     |                          |                     | of the object(s) changes.                            |                                  | object in the electric                           |
|                     |                          |                     |                                                      |                                  | field changes, <u>or</u> given a                 |
|                     |                          |                     |                                                      |                                  | model or information                             |
|                     |                          |                     |                                                      |                                  | about a magnet, draw the                         |
|                     |                          |                     |                                                      |                                  | magnetic field or                                |
|                     |                          |                     |                                                      |                                  | identify the relative                            |
|                     |                          |                     |                                                      |                                  | strength and/or direction                        |
|                     |                          |                     |                                                      |                                  | of the magnetic field                            |
|                     |                          |                     |                                                      |                                  | around the magnet.                               |
|                     |                          |                     |                                                      |                                  |                                                  |
|                     |                          |                     |                                                      |                                  |                                                  |

| <b>Topic and PE</b> | NYS Level 5           | NYS Level 4       | NYS Level 3                    | NYS Level 2                    | NYS Level 1                       |
|---------------------|-----------------------|-------------------|--------------------------------|--------------------------------|-----------------------------------|
|                     | Perform statistical   | Analyze data to   | Given a description,           | Given a schematic diagram,     | Given a description               |
|                     | analysis on multiple  | support the claim | information, and/or data for   | description of, and/or data    | and/or schematic                  |
|                     | data sets in order to | that Ohm's Law    | an unspecified series or       | for a circuit (simple, series, | diagram of a circuit,             |
|                     | make and support a    | describes the     | parallel circuit, draw the     | or parallel),                  | identify the direction of         |
|                     | claim about Ohm's     | mathematical      | corresponding schematic        | identify a pattern among       | the conventional current          |
|                     | Law and the           | relationship      | diagram, <u>or</u> given a     | the potential difference,      | in the circuit, <u>or</u> given a |
|                     | mathematical          | among the         | schematic diagram,             | current, resistance, power,    | description and/or data           |
|                     | relationship among    | potential         | description of, and/or data    | or energy of the circuit or    | of a circuit, identify the        |
|                     | the potential         | difference,       | for a series or parallel       | an individual circuit          | corresponding schematic           |
| Energy              | difference, current,  | current, and      | circuit, use mathematical      | component, or                  | diagram for the circuit,          |
|                     | and resistance of an  | resistance of an  | relationship(s) to describe    | apply a pattern to             | or given a description of,        |
| HS-PS3-6            | electric circuit.     | electric circuit. | the potential difference,      | determine the potential        | schematic diagram of,             |
|                     |                       |                   | current, resistance, power,    | difference, current,           | and/or data for a series          |
|                     |                       |                   | and/or energy of the circuit   | resistance, power, or          | or parallel circuit, use          |
|                     |                       |                   | or an individual circuit       | energy of the circuit or an    | evidence to support the           |
|                     |                       |                   | component, <u>or</u> given a   | individual circuit             | identification of the             |
|                     |                       |                   | schematic diagram,             | component.                     | circuit, <u>or</u> given a        |
|                     |                       |                   | description of, and/or data    |                                | schematic diagram,                |
|                     |                       |                   | for a series or parallel       |                                | description of                    |
|                     |                       |                   | circuit, use mathematical      |                                | information about,                |
|                     |                       |                   | relationship(s) to describe    |                                | and/or data for a simple          |
|                     |                       |                   | what happens to the            |                                | circuit, determine the            |
|                     |                       |                   | potential difference, current, |                                | potential difference,             |
|                     |                       |                   | resistance, power, and/or      |                                | current, resistance,              |
|                     |                       |                   | energy of the circuit or an    |                                | power, or energy of the           |
|                     |                       |                   | individual circuit             |                                | circuit.                          |
|                     |                       |                   | component when change(s)       |                                |                                   |
|                     |                       |                   | are made to the circuit.       |                                |                                   |

| <b>Topic and PE</b>                                                   | NYS Level 5                                                                                                                                                                                                                                                                              | NYS Level 4                                                                                                                                                                                                                                                                 | NYS Level 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYS Level 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NYS Level 1                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Topic and PE<br>Waves and<br>Electromagnetic<br>Radiation<br>HS-PS4-1 | NYS Level 5<br>Plan and conduct an<br>investigation and use<br>mathematical<br>representations to<br>evaluate claims<br>regarding the<br>relationships among<br>the period, frequency,<br>wavelength, and<br>speed of waves<br>traveling and<br>transferring energy in<br>various media. | NYS Level 4<br>Use mathematical<br>representations to<br>support a claim<br>regarding<br>relationships<br>among the period,<br>frequency,<br>wavelength, and<br>speed of waves<br>traveling and<br>transferring<br>energy<br>(amplitude,<br>frequency) in<br>various media. | Given data, model(s), and/or<br>a mathematical<br>representation, determine<br>the period, frequency,<br>wavelength, or speed of a<br>wave or electromagnetic<br>radiation (photon) traveling<br>and transferring energy in a<br>medium, <u>or</u> use<br>mathematical relationships<br>and a ruler and protractor to<br>construct the reflected<br>and/or refracted ray(s) to<br>show the direction of a<br>wave as it hits a boundary,<br>or determine the index of<br>refraction. | <b>NYS Level 2</b><br>Use words, diagrams,<br>and/or graphs to represent<br>the mathematical<br>relationships among the<br>period, frequency,<br>wavelength, and/or speed<br>of waves in a medium, <u>or</u><br>use mathematical<br>relationships to determine<br>the direction of a wave as<br>the wave hits a boundary<br>(reflection and/or<br>refraction), <u>or</u> given data,<br>model(s), and/or a<br>mathematical<br>representation, compare the<br>phase of points at positions<br>on the wave or the relative<br>amount of energy<br>transferred due to<br>amplitude or frequency, or<br>determine the amount of<br>energy transferred due to<br>the frequency of<br>electromagnetic radiation<br>(photon). | <b>NYS Level 1</b><br>Draw a model of a wave<br>with given<br>characteristics or identify<br>the characteristics of a<br>given wave traveling and<br>transferring energy in a<br>medium (period,<br>frequency, wavelength,<br>amplitude, speed, and/or<br>type), <u>or</u> identify the<br>change in characteristics<br>of a wave as the wave<br>hits a boundary. |

| <b>Topic and PE</b>                                   | NYS Level 5                                                                                                                                                                                                                                 | NYS Level 4                                                                                                                                                                                                                                                                                     | NYS Level 3                                                                                                                                                                   | NYS Level 2                                                                                                                                           | NYS Level 1                                                                                                                                     |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Waves and<br>Electromagnetic<br>Radiation<br>HS-PS4-2 | Evaluate questions<br>about the advantages<br>and disadvantages of<br>using a digital<br>transmission and<br>storage of<br>information using<br>multiple sources of<br>scientific and<br>technical information.                             | Evaluate<br>questions about<br>the advantages of<br>using a digital<br>transmission and<br>storage of<br>information.                                                                                                                                                                           | Evaluate a question about<br>an advantage and/or<br>disadvantage of using a<br>digital transmission and/or<br>storage of information.                                         | List the advantages or<br>disadvantages of using a<br>digital transmission and/or<br>storage of information.                                          | Identify given<br>transmission data or<br>storage data as being<br>either analog or digital.                                                    |
| Waves and<br>Electromagnetic<br>Radiation<br>HS-PS4-3 | Using multiple<br>sources of evidence<br>and scientific<br>reasoning, construct<br>and evaluate a claim<br>that for some<br>situations one model<br>of electromagnetic<br>radiation (wave or<br>particle) is more<br>useful than the other. | Evaluate the<br>claims, evidence,<br>and reasoning<br>behind the idea<br>that<br>electromagnetic<br>radiation can be<br>described either<br>by a wave model<br>or a particle<br>model (quantum<br>theory), and that<br>for some<br>situations one<br>model is more<br>useful than the<br>other. | Given information, support<br>or refute a claim regarding<br>the use of the wave model<br>or the particle model for<br>electromagnetic radiation to<br>describe a phenomenon. | Given information about a<br>phenomenon, identify the<br>evidence that supports a<br>claim about the model<br>which best describes the<br>phenomenon. | Identify a phenomenon<br>from those given that is<br>best described by the<br>wave and/or particle<br>model of<br>electromagnetic<br>radiation. |

| <b>Topic and PE</b>                                   | NYS Level 5                                                                                                                                                                                                                                                                          | NYS Level 4                                                                                                                                                                                                                         | NYS Level 3                                                                                                                                                                                                                                                       | NYS Level 2                                                                                                                                                                                                                                          | NYS Level 1                                                                                                                                                                                                           |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Waves and<br>Electromagnetic<br>Radiation<br>HS-PS4-4 | Gather and evaluate<br>the validity and<br>reliability of various<br>scientific sources.<br>Formulate a valid<br>claim on the effects<br>that different<br>frequencies of<br>electromagnetic<br>radiation have when<br>absorbed by matter,<br>citing evidence from<br>these sources. | Evaluate the<br>validity and<br>reliability of<br>claims in<br>published<br>materials of the<br>effects that<br>different<br>frequencies of<br>electromagnetic<br>radiation have<br>when absorbed by<br>matter.                     | Support or refute a given<br>claim, using scientific<br>and/or technical<br>information, that describes<br>the effect(s) that a<br>frequency or range of<br>frequencies and/or<br>wavelengths of<br>electromagnetic radiation<br>have when absorbed by<br>matter. | Given a claim, identify the<br>evidence to support the<br>claim about an effect<br>electromagnetic radiation<br>of a given frequency or<br>range of frequencies and/or<br>wavelengths has when<br>absorbed by matter.                                | Identify the claim from<br>those provided that<br>describes an effect that<br>electromagnetic<br>radiation of a given<br>frequency or range of<br>frequencies and/or<br>wavelengths has when<br>absorbed by matter.   |
| Waves and<br>Electromagnetic<br>Radiation<br>HS-PS4-5 | Communicate<br>technical information<br>to evaluate the<br>effectiveness and<br>reliability of a<br>technological device<br>that uses principles of<br>wave behavior and<br>wave interactions<br>with matter to<br>transmit and capture<br>information and<br>energy.                | Communicate<br>technical<br>information about<br>how some<br>technological<br>devices use the<br>principles of<br>wave behavior<br>and wave<br>interactions with<br>matter to transmit<br>and capture<br>information and<br>energy. | Given information about a<br>technological device,<br>explain how the device uses<br>a principle of wave behavior<br>and/or wave interactions<br>with matter to transmit and<br>capture information and<br>energy.                                                | Given information about a<br>technological device,<br>support or refute a claim<br>that explains a principle of<br>wave behavior and/or wave<br>interactions with matter<br>that is used to transmit<br>and/or capture information<br>and/or energy. | Given information about<br>a technological device,<br>identify a principle of<br>wave behavior and/or<br>wave interactions with<br>matter that is used to<br>transmit and/or capture<br>information and/or<br>energy. |

| <b>Topic and PE</b>                                   | NYS Level 5                                                                                                                                                                                                                                                                                                                                                                                                                     | NYS Level 4                                                                                                                                                                                                     | NYS Level 3                                                                                                                                                                                                                                                                                                                           | NYS Level 2                                                                                                                                                                                                                                                                                                                                       | NYS Level 1                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Waves and<br>Electromagnetic<br>Radiation<br>HS-PS4-6 | Use mathematical<br>models, including ray<br>diagrams, to<br>determine<br>relationships among<br>the size and location<br>of images, size and<br>location of objects,<br>and focal lengths for<br>lenses and mirrors.                                                                                                                                                                                                           | Use mathematical<br>models to<br>determine<br>relationships<br>among the size<br>and location of<br>images, size and<br>location of<br>objects, and focal<br>lengths of lenses<br>and mirrors.                  | Use mathematical models<br>and/or ray diagrams to<br>describe the patterns in the<br>change in size and/or<br>location of an image for an<br>object at two or more<br>positions for a lens or mirror<br>with a given focal length.                                                                                                    | Use mathematical models<br>or given ray diagrams to<br>identify the patterns in the<br>change in size and/or<br>location of an image for an<br>object at two or more<br>positions for a lens or<br>mirror with a given focal<br>length.                                                                                                           | Use mathematical<br>models, patterns, or<br>given ray diagrams to<br>determine the relative<br>size, and/or location of<br>the image and/or focal<br>length for a lens or<br>mirror, <u>or</u> given<br>information or ray<br>diagrams, identify the<br>type of lens or mirror<br>and the type of image<br>formed.                                                                                                                |
| Space Systems<br>HS-ESS1-2                            | Construct, evaluate,<br>and revise an<br>explanation to<br>support the<br>connection between<br>electromagnetic<br>radiation and the<br>composition of matter<br>in the universe, <u>or</u><br>construct, evaluate,<br>and revise an<br>explanation to<br>support the<br>connection between<br>spectral data, Doppler<br>shift, and motion<br>relative to Earth<br>(away from or<br>towards) for distant<br>stars and galaxies. | Construct an<br>explanation of the<br>Big Bang theory<br>based on<br>astronomical<br>evidence of light<br>spectra, motion of<br>distant galaxies,<br>and of the<br>composition of<br>matter in the<br>universe. | Evaluate one or more<br>explanations for the<br>composition of matter in the<br>universe based on<br>astronomical evidence of<br>light spectra, <u>or</u> using given<br>spectral data from distant<br>stars and/or galaxies,<br>explain how Doppler shift<br>provides evidence for<br>relative motion away from<br>or towards Earth. | Compare spectral data<br>obtained from astronomical<br>evidence to determine the<br>presence of elements that<br>make up distant stars and<br>galaxies, <u>or</u> compare<br>spectral data obtained from<br>astronomical evidence to<br>determine the motion<br>relative to Earth (away<br>from or towards) for distant<br>stars and/or galaxies. | Given spectral data (e.g.<br>absorption or emission<br>spectra), identify the data<br>that provides evidence of<br>the presence of an<br>element in a sample of<br>matter, <u>or</u> identify an<br>element in a sample of<br>matter by interpreting<br>spectral data, <u>or</u> identify<br>spectral data that<br>provides evidence of<br>motion relative to Earth<br>(away from or towards)<br>for a distant star or<br>galaxy. |

| <b>Topic and PE</b>                | NYS Level 5                                                                                                                                                                                                                                                                                                                           | NYS Level 4                                                                                                                                                                                                                                                         | NYS Level 3                                                                                                                                                                                                                                                                                            | NYS Level 2                                                                                                                                                                                               | NYS Level 1                                                                                                                                               |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Engineering<br>Design<br>HS-ETS1-1 | Evaluate two or more<br>major global<br>challenges to specify<br>qualitative and<br>quantitative criteria<br>and constraints for<br>solutions, which could<br>include new<br>technologies, that<br>account for societal<br>needs and wants.                                                                                           | Analyze a major<br>global challenge to<br>specify qualitative<br>and quantitative<br>criteria and<br>constraints for<br>solutions that<br>account for<br>societal needs and<br>wants.                                                                               | Analyze a major global<br>challenge to specify<br>qualitative or quantitative<br>criteria and constraints for<br>solutions that account for<br>societal needs and wants.                                                                                                                               | Given a major global<br>challenge, describe the<br>qualitative or quantitative<br>criteria or constraint for the<br>given solution that best<br>accounts for societal needs<br>or wants.                  | Given a major global<br>challenge, identify the<br>criteria or constraint for<br>the given solution that<br>best accounts for societal<br>needs or wants. |
| Engineering<br>Design<br>HS-ETS1-2 | For a complex real-<br>world problem, design<br>multiple solutions to<br>sub-problems based on<br>student-generated data<br>and/or scientific<br>information from other<br>sources. Describe the<br>rationale, criteria, and<br>constraints of each<br>sub-problem.                                                                   | Design a solution<br>to a complex real-<br>world problem by<br>breaking it down<br>into smaller, more<br>manageable<br>problems that can<br>be solved through<br>engineering.                                                                                       | Given a complex real-world<br>problem, identify one<br>smaller, more manageable<br>problem and describe a<br>solution to that problem that<br>can be solved through<br>engineering.                                                                                                                    | Given a complex real-world<br>problem that has been<br>broken down into smaller,<br>more manageable problems,<br>identify a solution to one<br>smaller problem that can be<br>solved through engineering. | Identify the solution from<br>those provided that<br>addresses a smaller, more<br>manageable real-world<br>problem.                                       |
| Engineering<br>Design<br>HS-ETS1-3 | Evaluate a solution to<br>a complex real-world<br>problem based on<br>prioritized criteria by<br>generating a<br>prioritized list of<br>criteria and trade-offs<br>that account for a<br>range of multiple<br>constraints, including<br>cost, safety, reliability,<br>and aesthetics, as well<br>as possible social,<br>cultural, and | Evaluate a<br>solution to a<br>complex real-<br>world problem<br>based on<br>prioritized criteria<br>and trade-offs that<br>account for a<br>range of multiple<br>constraints,<br>including cost,<br>safety, reliability,<br>and aesthetics, as<br>well as possible | Identify a solution to a<br>complex real-world problem<br>based on<br>prioritized criteria and/or<br>trade-offs (positives and<br>negatives) for a range of<br>constraints, such as cost,<br>safety, reliability, aesthetics,<br>as well as possible social,<br>cultural, or environmental<br>impacts. | Describe a solution to a<br>complex real-world problem<br>based on given criteria and<br>constraints.                                                                                                     | Identify the solution from<br>those provided to a<br>complex real-world<br>problem based on given<br>criteria and/or constraints.                         |

| <b>Topic and PE</b> | NYS Level 5                            | NYS Level 4                | NYS Level 3                   | NYS Level 2                 | NYS Level 1              |
|---------------------|----------------------------------------|----------------------------|-------------------------------|-----------------------------|--------------------------|
|                     | environmental                          | social, cultural,          |                               |                             |                          |
|                     | impacts. Explain how                   | and environmental          |                               |                             |                          |
|                     | these solutions affect society and the | impacts.                   |                               |                             |                          |
|                     | environment.                           |                            |                               |                             |                          |
|                     |                                        |                            |                               |                             |                          |
|                     |                                        |                            |                               |                             |                          |
|                     |                                        |                            |                               |                             |                          |
|                     |                                        |                            |                               |                             |                          |
|                     |                                        |                            |                               |                             |                          |
|                     | Use a computer                         | Use a computer             | Given data (from a computer   | Given data (from a computer | Identify the impact of a |
|                     | simulation to model                    | simulation to              | simulation), describe the     | simulation), identify the   | given solution to a      |
|                     | the impact of proposed                 | model the impact           | impact of proposed solutions  | impact of a proposed        | complex real-world       |
|                     | solutions to related                   | of proposed                | to a complex real-world       | solution to a complex real- | problem.                 |
|                     | complex real-world                     | solutions to a             | problem with limited criteria | world problem, or the       |                          |
| Engineering         | problems with                          | complex real-              | and constraints on            | impact on an interaction    |                          |
| Design              | numerous criteria and                  | world problem              | interactions within and/or    | within or between two       |                          |
| HS-ETS1-4           | constraints on interactions within and | with numerous criteria and | between systems relevant to   | systems relevant to the     |                          |
| П5-Е 151-4          | between systems                        | constraints on             | the problem.                  | problem.                    |                          |
|                     | relevant to the                        | interactions within        |                               |                             |                          |
|                     | problem.                               | and between                |                               |                             |                          |
|                     | r                                      | systems relevant           |                               |                             |                          |
|                     |                                        | to the problem.            |                               |                             |                          |