# New York State Testing Program P-12 Science Learning Standards

**Performance Level Descriptions** 

Physical Science: Chemistry Fall 2024



THE STATE EDUCATION DEPARTMENT / THE UNIVERSITY OF THE STATE OF NEW YORK / ALBANY, NY 12234

Performance level descriptions (PLDs) help communicate to students, families, educators, and the public the specific knowledge and skills expected of students in order for them to demonstrate proficiency in each Learning Standard for Science. The PLDs serve several purposes in classroom instruction and assessment. They are the foundation of rich discussion around what students need to do to perform at higher levels, and they explain the progression of learning within a subject area. PLDs are also crucial in explaining student performance on the New York State (NYS) assessments since they make a connection between the scale score, the performance level (e.g., meets the expectation of the learning standards) and specific knowledge and skills typically demonstrated by students achieving at that level.

#### **Policy Definitions of Performance Levels**

For each subject area, students perform along a continuum of the knowledge and skills necessary to meet the demands of the Learning Standards for Science. There are students who meet the expectations of the standards with distinction, students who fully meet the expectations, students who minimally meet the expectations, students who partially meet the expectations, and students who do not demonstrate sufficient knowledge or skills required for any performance level. New York State assessments are designed to classify student performance into one of five levels based on the knowledge and skills the student has demonstrated. These performance levels for the Regents level science test are defined as:

### NYS Level 5

Students performing at this level meet the expectations of the Science Learning Standards with distinction for Physical Science: Chemistry.

#### NYS Level 4

Students performing at this level fully meet the expectations of the Science Learning Standards for Physical Science: Chemistry. They are likely prepared to succeed in the next level of coursework.

#### NYS Level 3

Students performing at this level minimally meet the expectations of the Science Learning Standards for Physical Science: Chemistry. They meet the content area requirements for a Regents diploma but may need additional support to succeed in the next level of coursework.

#### NYS Level 2

Students performing at this level partially meet the expectations of the Science Learning Standards for Physical Science: Chemistry. Students with disabilities performing at this level meet the content area requirements for a local diploma but may need additional support to succeed in the next level of coursework.

#### NYS Level 1

Students performing at this level demonstrate knowledge, skills and practices embodied by the Science Learning Standards for Physical Science: Chemistry below that of a Level 2.

#### How were the PLDs developed?

Following research-based best practice for the development of PLDs, the number of performance levels and their definitions were specified prior to the articulation of the full descriptions. The New York State Education Department (NYSED) convened a group of NYS science educators to develop the initial draft PLDs for Physical Science: Chemistry. In developing PLDs, participants considered policy definitions of the performance levels and the knowledge and skill expectations for each grade level in the Science Learning Standards. Once they established the appropriate knowledge and skills from a particular standard for NYS Level 4 (fully meet), panelists worked together to parse the knowledge and skills across the other performance levels in such a way that the progression of the knowledge and skills was clearly seen moving from Level 1 to Level 5. This process was repeated for all of the standards within the course. The draft PLDs then went through additional rounds of review and edits from a number of NYS-certified educators, content specialists, and assessment experts under NYSED supervision.

#### How can the PLDs be used in Instruction?

The PLDS, which differentiate and stratify the overall continuum of knowledge and skills defined by the Learning Standards into five distinct levels of learning should be used as guidance by educators. NYSED encourages the use of the PLDs for a variety of purposes, including differentiating instruction to maximize individual student outcomes, creating formative classroom assessments and rubrics to help identify target performance levels for individuals or groups of students, and tracking student growth along the proficiency continuum as described by the PLDs. The knowledge and skills shown in the PLDs describe typical performance and progression. However, the order in which students will demonstrate the knowledge and skills within and between performance levels may be staggered (i.e., a student who predominantly demonstrates Level 3 knowledge and skills may simultaneously demonstrate certain knowledge and skills indicative of Level 4). Although the ranges of skills expected of students at each performance level are detailed in the PLDs, specific science concepts will be elaborated and expanded as those skills are applied in the science classroom. Because the Learning Standards for science encompass the Science and Engineering Practices (SEP), Disciplinary Core Ideas (DCI), and Crosscutting Concepts (CCC), each of them must be examined in depth. The integration of these three dimensions provides students with a context for the content of science, a sense of how science knowledge is acquired and understood, and a sense of how the sciences are connected through concepts that have universal meaning across the disciplines.

#### How are the PLDs used in Assessment?

PLDs are essential in setting performance standards (i.e., "cut scores") for New York State assessments. Standard setting panelists use PLDs to determine the expectations for students to demonstrate the knowledge and skills necessary to *just barely* attain a Level 2, Level 3, Level 4 or Level 5 on the assessment. This knowledge and these skills drive discussions that influence the panelists as they recommend the cut scores on the assessment. PLDs are also used in question development. Question writers are assigned to write questions that draw on the specific knowledge and skills from a PLD. This ensures that each test has questions that measure student performance all along the continuum. Questions on the Science Regents Examinations will emphasize skills from the PLDs that can be measured via written assessment. Teachers can use the PLDs in the same manner when developing both formative and summative classroom assessments. Tasks that require students to demonstrate knowledge and skills from the PLDs can be tied back to the performance level with which the PLD is associated, providing the teacher with feedback about the students' progress as well as a wealth of other skills that the students are likely able to demonstrate (or can aspire to in the case of the nexthighest PLD).

| <b>Topic and PE</b>                               | NYS Level 5                                                                                                                                                                                                                   | NYS Level 4                                                                                                                                                                                         | NYS Level 3                                                                                                                                                                                                                                                                                          | NYS Level 2                                                                                                                                                                                                                                                            | NYS Level 1                                                                                                                                                                                                                |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure and<br>Properties of Matter<br>HS-PS1-1 | Use the periodic table as<br>a model to construct a<br>representation of<br>chemical behavior using<br>relative properties of<br>elements based on the<br>patterns of electrons in<br>the outermost energy<br>level of atoms. | Use the periodic table as<br>a model to predict the<br>relative properties of<br>elements based on the<br>patterns of electrons in<br>the outermost energy<br>level of atoms.                       | Use the periodic table as<br>a model to describe the<br>relative properties of<br>elements based on the<br>patterns of electrons in<br>the outermost energy<br>level of atoms.                                                                                                                       | Use the periodic table as<br>a model to identify the<br>patterns of electrons in<br>the outermost energy<br>level of atoms and the<br>relative properties of<br>elements within a group<br>or period.                                                                  | Use the periodic table as<br>a model to identify the<br>patterns of electrons in<br>the outermost energy<br>level of atoms or relative<br>properties of the<br>elements within a group<br>or period.                       |
| Structure and<br>Properties of Matter<br>HS-PS1-3 | Plan and conduct<br>multiple investigations<br>to gather and evaluate<br>evidence that compares<br>the structure of<br>substances at the bulk<br>scale to explain the<br>strength of electrical<br>forces between particles.  | Plan and conduct an<br>investigation to gather<br>evidence to compare the<br>structure of substances at<br>the bulk scale to infer<br>the strength of electrical<br>forces between particles.       | Given a plan, conduct an<br>investigation <b>or</b> given<br>the results of an<br>investigation or provided<br>information, describe<br>patterns of the relative<br>strength of electrical<br>forces between particles,<br>based on structures,<br>and/or the resulting<br>properties at bulk scale. | Given a plan, conduct an<br>investigation <b>or</b> given<br>the results of an<br>investigation or provided<br>information, make a<br>claim that compares the<br>relative strength of<br>electrical forces<br>between particles of<br>substances at the bulk<br>scale. | Use data from an<br>investigation or provided<br>information to identify a<br>pattern in bulk scale<br>properties of substances<br>as it relates to the<br>relative strength of<br>electrical forces between<br>particles. |
| Structure and<br>Properties of Matter<br>HS-PS1-8 | Develop, evaluate, and<br>revise models to<br>compare and contrast<br>changes in the<br>composition of the<br>nucleus of the atom and<br>scale of energy released<br>during nuclear<br>processes.                             | Develop models to<br>illustrate the changes in<br>the composition of the<br>nucleus of the atom and<br>the energy released<br>during the processes of<br>fission, fusion, and<br>radioactive decay. | Develop and/or use a<br>model(s) to compare<br>and/or contrast the<br>changes in the<br>composition of the<br>nucleus of the atom or<br>the scale of energy<br>released during a nuclear<br>process to other<br>transformations.                                                                     | Develop and/or use a<br>model of a nuclear<br>process to predict the<br>changes in the<br>composition of the<br>nucleus of the atom.                                                                                                                                   | Use a model/information<br>to identify a change in<br>the composition of the<br>nucleus of the atom or a<br>nuclear process.                                                                                               |

| Phy | vsical | Science: | Chemistry | Performance ] | Level D | Descriptions |
|-----|--------|----------|-----------|---------------|---------|--------------|
|     | /      |          |           |               |         |              |

| <b>Topic and PE</b>                                           | NYS Level 5                                                                                                                                                                                                                                  | NYS Level 4                                                                                                                                                                        | NYS Level 3                                                                                                                                                                                                                              | NYS Level 2                                                                                                                                                                                  | NYS Level 1                                                                                                                                                                     |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure and<br>Properties of Matter<br>HS-PS2-6             | Compare, integrate, and<br>evaluate scientific and<br>technical information<br>about the structure and<br>function of various<br>designed materials at the<br>particulate-level to<br>optimize the<br>functionality of a<br>product.         | Communicate scientific<br>and technical<br>information about why<br>the particulate-level<br>structure is important in<br>the functioning of<br>designed materials.                | Use scientific or<br>technical information to<br>explain how the<br>particulate-level<br>structure is important to<br>the functioning of<br>designed material(s).                                                                        | Use information to<br>describe how the<br>particulate-level<br>structure of designed<br>material(s) supports its<br>function.                                                                | Use information to<br>identify a particulate-<br>level structure or<br>function of a designed<br>material.                                                                      |
| Structure and<br>Properties of Matter<br>HS-PS1-9<br>(NYSED)  | Plan and conduct an<br>investigation to gather<br>and analyze data that<br>validates the claim that<br>the combined gas law<br>describes the<br>relationships among<br>volume, pressure, and<br>temperature for a sample<br>of an ideal gas. | Analyze data to support<br>the claim that the<br>combined gas law<br>describes the<br>relationships among<br>volume, pressure, and<br>temperature for a sample<br>of an ideal gas. | Use data/information<br>that provides evidence to<br>make and/or support a<br>claim about the<br>relationship between two<br>variables in the<br>combined gas law when<br>the third variable and<br>molar quantity are held<br>constant. | Given data, construct a<br>mathematical<br>representation and/or<br>calculate the value of an<br>unknown variable in the<br>combined gas law when<br>the molar quantity is<br>held constant. | Use data/information to<br>identify the relationship<br>between two variables in<br>the combined gas law<br>when the third variable<br>and molar quantity are<br>held constant. |
| Structure and<br>Properties of Matter<br>HS-PS1-10<br>(NYSED) | Evaluate the validity of<br>claims, evidence, and/or<br>reasoning of currently<br>accepted explanations<br>regarding formation,<br>properties and behaviors<br>of solutions at bulk<br>scales.                                               | Use evidence to support<br>claims regarding the<br>formation, properties<br>and behaviors of<br>solutions at bulk scales.                                                          | Use data/information<br>that provides evidence to<br>make and/or support a<br>claim that identifies<br>relationships between<br>the formation, properties<br>and/or behaviors of<br>solutions at bulk scales.                            | Construct and/or use a<br>mathematical<br>representation as<br>evidence to determine<br>the quantities required to<br>form or describe a<br>solution.                                        | Use data/information to<br>identify a relationship<br>between the formation,<br>property, and/or<br>behavior of one or more<br>solutions.                                       |

Physical Science: Chemistry Performance Level Descriptions

| <b>Topic and PE</b>            | NYS Level 5                                                                                                                                                                                                                                                                                            | NYS Level 4                                                                                                                                                                                                                                       | NYS Level 3                                                                                                                                                                                                                                         | NYS Level 2                                                                                                                                                                                                    | NYS Level 1                                                                                                                                                                                                                                      |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical Reactions<br>HS-PS1-2 | Construct, revise, and<br>evaluate explanations for<br>the outcome of simple<br>chemical reactions based<br>on the predictable<br>behavior of reactants, the<br>outermost electron states<br>of atoms, trends in the<br>periodic table, and<br>knowledge of the<br>patterns of chemical<br>properties. | Construct and revise an<br>explanation for the<br>outcome of a simple<br>chemical reaction based<br>on the outermost<br>electron states of atoms,<br>trends in the periodic<br>table, and knowledge of<br>the patterns of chemical<br>properties. | Construct or revise an<br>explanation for the<br>outcome of a simple<br>chemical reaction based<br>on the outermost<br>electron states of atoms,<br>trends in the periodic<br>table, and/or knowledge<br>of the patterns of<br>chemical properties. | Predict the outcome of a<br>simple chemical reaction<br>based on the outermost<br>electron states of atoms,<br>trends in the periodic<br>table, and/or knowledge<br>of the patterns of<br>chemical properties. | Given possible reaction<br>outcomes, identify the<br>outcome of a simple<br>chemical reaction using<br>the outermost electron<br>states of atoms, trends in<br>the periodic table, or<br>knowledge of the<br>patterns of chemical<br>properties. |
| Chemical Reactions<br>HS-PS1-4 | Develop and critique<br>models to illustrate that<br>the release or absorption<br>of energy from a<br>chemical reaction system<br>depends upon the<br>changes in total bond<br>energy.                                                                                                                 | Develop a model to<br>illustrate that the release<br>or absorption of energy<br>from a chemical reaction<br>system depends upon the<br>changes in total bond<br>energy.                                                                           | Develop and/or use a<br>model to describe the<br>energy associated with<br>the formation and/or the<br>breaking of a bond(s)<br>between atoms.                                                                                                      | Use a model to describe<br>the release or absorption<br>of energy from a<br>chemical reaction<br>system.                                                                                                       | Use a model/information<br>to identify the changes in<br>energy in a chemical<br>reaction system.                                                                                                                                                |
| Chemical Reactions<br>HS-PS1-5 | Construct explanations<br>and design solutions,<br>using student-generated<br>evidence, that apply<br>scientific principles to<br>explain how the rate of<br>chemical changes are<br>affected when conditions<br>are varied.                                                                           | Apply scientific<br>principles and evidence<br>to explain how the rate<br>of a physical or chemical<br>change is affected when<br>conditions are varied.                                                                                          | Use data/information<br>that provides evidence<br>to predict and explain<br>how the rate of a<br>physical or chemical<br>change is affected when<br>conditions are varied.                                                                          | Predict and/or describe<br>how the rate of a<br>physical or chemical<br>change is affected when<br>conditions are varied.                                                                                      | Use provided<br>information to identify<br>the evidence for how the<br>rate of a physical or<br>chemical change is<br>affected when conditions<br>are varied.                                                                                    |

| <b>Topic and PE</b>                        | NYS Level 5                                                                                                                                                                                   | NYS Level 4                                                                                                                                                    | NYS Level 3                                                                                                                                                                                                                          | NYS Level 2                                                                                                                                                                                | NYS Level 1                                                                                                                                                                                   |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical Reactions<br>HS-PS1-6             | Optimize the design of a<br>chemical system by<br>explaining how multiple<br>changes to experimental<br>conditions will increase<br>the amounts of products<br>in a system at<br>equilibrium. | Refine the design of a<br>chemical system by<br>specifying a change in<br>conditions that would<br>produce increased<br>amounts of products at<br>equilibrium. | Explain how a change in<br>the design of a chemical<br>system and/or<br>experimental conditions<br>would affect the amount<br>of products and/or<br>reactants at equilibrium.                                                        | Identify a modification<br>to the design or to the<br>experimental conditions<br>of a chemical system<br>and/or describe the effect<br>on the products and/or<br>reactants at equilibrium. | Use information<br>provided to identify a<br>change in the<br>experimental conditions<br>that would modify the<br>amount of products or<br>reactants at equilibrium.                          |
| Chemical Reactions<br>HS-PS1-7             | Create and revise<br>mathematical<br>representations to<br>support the claim that<br>atoms, and therefore<br>mass, are conserved<br>during a chemical<br>reaction.                            | Use mathematical<br>representations to<br>support the claim that<br>atoms, and therefore<br>mass, are conserved<br>during a chemical<br>reaction.              | Construct a<br>mathematical<br>representation and/or<br>calculate a quantity (e.g.<br># of particles, volume of<br>a gas, etc.), using the<br>relationship that atoms<br>and/or mass are<br>conserved during a<br>chemical reaction. | Use or complete a<br>mathematical<br>representation to<br>demonstrate that atoms<br>and/or mass are<br>conserved during a<br>chemical reaction.                                            | Use information<br>provided to identify<br>mathematical<br>representations that<br>demonstrate atoms<br>and/or mass are<br>conserved during a<br>chemical reaction.                           |
| Chemical Reactions<br>HS-PS1-11<br>(NYSED) | Plan and conduct<br>multiple investigations to<br>compare, explain, and<br>predict properties and<br>behaviors of acids and<br>bases.                                                         | Plan and conduct an<br>investigation to compare<br>properties and behaviors<br>of acids and bases.                                                             | Given a plan, conduct an<br>investigation <u>or</u> given<br>the results of an<br>investigation or provided<br>information, compare the<br>properties and/or<br>behaviors of acids and/or<br>bases.                                  | Given the results of an<br>investigation or provided<br>information, calculate a<br>quantity or make a claim<br>to identify a property<br>and/or behavior of an<br>acid or base.           | Given an investigation<br>plan or provided<br>information, select<br>appropriate tools and/or<br>materials that could be<br>used to identify a<br>property or behavior of<br>an acid or base. |

| <b>Topic and PE</b>                        | NYS Level 5                                                                                                                                                                                                                                                              | NYS Level 4                                                                                                                                                                                                                      | NYS Level 3                                                                                                                                                                                                                                                                 | NYS Level 2                                                                                                                                                                 | NYS Level 1                                                                                                                                                                 |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical Reactions<br>HS-PS1-12<br>(NYSED) | Evaluate claims and<br>analyze evidence to<br>communicate that some<br>chemical reactions<br>involve the transfer of<br>electrons as an energy<br>conversion occurs within<br>a system.                                                                                  | Use evidence to illustrate<br>that some chemical<br>reactions involve the<br>transfer of electrons as<br>an energy conversion<br>occurs within a system.                                                                         | Use a model (e.g.<br>electrochemical cell) or<br>information that provides<br>evidence to make a claim<br>or support the argument<br>that some chemical<br>reactions involve the<br>transfer of electrons as<br>an energy conversion<br>occurs within a system.             | Use or provide evidence<br>to demonstrate that some<br>chemical reactions<br>involve the transfer of<br>electrons within a<br>system.                                       | Use provided<br>information to identify a<br>reaction or a<br>component(s) in a model<br>that illustrates the<br>transfer of electrons<br>within a system.                  |
| Energy<br>HS-PS3-1                         | Create and revise a<br>computational model to<br>calculate the change in<br>the energy of one<br>component in a system<br>when the change in<br>energy of the other<br>component(s) and energy<br>flows in and out of the<br>system are known.                           | Create a computational<br>model to calculate the<br>change in the energy of<br>one component in a<br>system when the change<br>in energy of the other<br>component(s) and energy<br>flows in and out of the<br>system are known. | Use a given<br>computational model or<br>mathematical<br>representation to<br>calculate the change in<br>the energy of one<br>component in a system<br>when the change in<br>energy of the other<br>component(s) and energy<br>flows in and out of the<br>system are known. | Use a mathematical<br>representation, data or a<br>given model to predict<br>and/or describe the<br>energy transfer of a<br>component of a system.                          | Use mathematical<br>representation or<br>information provided to<br>identify energy<br>change(s) in one or more<br>components of a system.                                  |
| Energy<br>HS-PS3-5                         | Develop and identify the<br>limitations of a model of<br>two objects interacting<br>through electric or<br>magnetic fields to<br>explain the effect of the<br>forces between objects,<br>and describe the changes<br>in energy of the objects<br>due to the interaction. | Develop and use a model<br>of two objects<br>interacting through<br>electric or magnetic<br>fields to illustrate the<br>forces between objects<br>and the changes in<br>energy of the objects due<br>to the interaction.         | Develop a model of two<br>objects interacting and<br>illustrate the forces<br>between objects or the<br>changes in energy of the<br>objects due to the<br>interaction                                                                                                       | Use a model of two<br>objects interacting to<br>describe and/or show the<br>forces between objects<br>or the changes in energy<br>of the objects due to the<br>interaction. | Use a model/information<br>of two objects<br>interacting to identify the<br>forces between objects<br>or the changes in energy<br>of the objects due to the<br>interaction. |

Physical Science: Chemistry Performance Level Descriptions

| <b>Topic and PE</b>                                             | NYS Level 5                                                                                                                                                                                                                                                                   | NYS Level 4                                                                                                                                                                                      | NYS Level 3                                                                                                                                                                                                           | NYS Level 2                                                                                                                                                                                                                           | NYS Level 1                                                                                                                                                                  |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Waves and<br>Electromagnetic<br>Radiation<br>HS-PS4-4           | Gather and evaluate a<br>variety of valid and<br>reliable sources to<br>formulate a claim on the<br>effects that different<br>frequencies of<br>electromagnetic<br>radiation have when<br>absorbed by matter,<br>citing qualitative<br>evidence with scientific<br>reasoning. | Evaluate the validity and<br>reliability of claims in<br>published materials of<br>the effects that different<br>frequencies of<br>electromagnetic<br>radiation have when<br>absorbed by matter. | Make and support a<br>claim, using scientific<br>and/or technical<br>information, that<br>describes the effects of a<br>frequency and/or<br>wavelength of<br>electromagnetic<br>radiation when absorbed<br>by matter. | Use information that<br>provides evidence to<br>support a claim that<br>describes the effects of<br>different frequencies,<br>relative energies, and/or<br>wavelengths of<br>electromagnetic<br>radiation when absorbed<br>by matter. | Based on evidence,<br>identify the frequency,<br>wavelength, relative<br>energy, or effect on<br>matter of<br>electromagnetic<br>radiation when one of<br>these is provided. |
| Matter and Energy in<br>Organisms and<br>Ecosystems<br>HS-LS1-5 | Create a model, given<br>input and output of<br>matter and energy, to<br>demonstrate how<br>photosynthesis<br>transforms light energy<br>into stored chemical<br>energy.                                                                                                      | Use a model to illustrate<br>how photosynthesis<br>transforms light energy<br>into stored chemical<br>energy.                                                                                    | Use a model to describe<br>how the process of<br>photosynthesis conserves<br>energy and/or matter.                                                                                                                    | Use a model/information<br>demonstrating<br>photosynthesis to<br>identify energy and<br>matter components.                                                                                                                            | Use a model/information<br>to identify how the<br>process of<br>photosynthesis<br>transforms light energy<br>into stored chemical<br>energy.                                 |
| Engineering Design<br>HS-ETS1-1                                 | Evaluate two or more<br>major global challenges<br>to specify qualitative and<br>quantitative criteria and<br>constraints for solutions,<br>which could include new<br>technologies that account<br>for societal needs and<br>wants.                                          | Analyze a major global<br>challenge to specify<br>qualitative and<br>quantitative criteria and<br>constraints for solutions<br>that account for societal<br>needs and wants.                     | Analyze a major global<br>challenge to specify<br>qualitative or<br>quantitative criteria and<br>constraints for solutions<br>that account for societal<br>needs and wants.                                           | Given a major global<br>challenge, describe the<br>qualitative or<br>quantitative criteria or<br>constraint for the given<br>solution that best<br>accounts for societal<br>needs or wants.                                           | Given a major global<br>challenge, identify the<br>criteria or constraint for<br>the given solution that<br>best accounts for societal<br>needs or wants.                    |

Physical Science: Chemistry Performance Level Descriptions

| <b>Topic and PE</b>             | NYS Level 5                                                                                                                                                                                                                                                                                                                                                                                                                            | NYS Level 4                                                                                                                                                                                                                                                                                               | NYS Level 3                                                                                                                                                                                                                                                                                               | NYS Level 2                                                                                                                                                                                                      | NYS Level 1                                                                                                                           |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Engineering Design<br>HS-ETS1-2 | For a complex real-<br>world problem, design<br>multiple solutions to<br>sub-problems based on<br>student generated data<br>and/or scientific<br>information from other<br>sources. Describe the<br>rationale, criteria, and<br>constraints of each sub-<br>problem.                                                                                                                                                                   | Design a solution to a<br>complex real-world<br>problem by breaking it<br>down into smaller, more<br>manageable problems<br>that can be solved<br>through engineering.                                                                                                                                    | Given a complex real-<br>world problem, identify<br>one smaller more<br>manageable problem and<br>describe a solution to<br>that problem that can be<br>solved through<br>engineering.                                                                                                                    | Given a complex real-<br>world problem that has<br>been broken down into<br>smaller, more<br>manageable problems,<br>identify a solution to one<br>smaller problem that can<br>be solved through<br>engineering. | Identify the solution,<br>from those provided, that<br>addresses a smaller,<br>more manageable real-<br>world problem.                |
| Engineering Design<br>HS-ETS1-3 | Evaluate a solution to a<br>complex real-world<br>problem based on<br>prioritized criteria by<br>generating a prioritized<br>list of criteria and trade-<br>offs that account for a<br>range of multiple<br>constraints, including<br>cost, safety, reliability,<br>and aesthetics, as well as<br>possible social, cultural,<br>and environmental<br>impacts. Explain how<br>these solutions affect<br>society and the<br>environment. | Evaluate a solution to a<br>complex real-world<br>problem based on<br>prioritized criteria and<br>trade-offs that account<br>for a range of multiple<br>constraints, including<br>cost, safety, reliability,<br>and aesthetics, as well as<br>possible social, cultural,<br>and environmental<br>impacts. | Identify a solution to a<br>complex real-world<br>problem based on<br>prioritized criteria and/or<br>trade-offs (positives and<br>negatives) for a range of<br>constraints, such as cost,<br>safety, reliability,<br>aesthetics, as well as<br>possible social, cultural,<br>or environmental<br>impacts. | Describe a solution to a<br>complex real-world<br>problem based on given<br>criteria and constraints.                                                                                                            | Identify the solution<br>from those provided, to a<br>complex real-world<br>problem based on given<br>criteria and/or<br>constraints. |

Physical Science: Chemistry Performance Level Descriptions

| <b>Topic and PE</b> | NYS Level 5              | NYS Level 4              | NYS Level 3              | NYS Level 2              | NYS Level 1              |
|---------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|                     | Use a computer           | Use a computer           | Given data (from a       | Given data (from a       | Identify the impact of a |
|                     | simulation to model the  | simulation to model the  | computer simulation),    | computer simulation),    | given solution to a      |
|                     | impact of proposed       | impact of proposed       | describe the impact of   | identify the impact of a | complex real-world       |
| г.:р.:              | solutions to related     | solutions to a complex   | proposed solutions to a  | proposed solution to a   | problem.                 |
| Engineering Design  | complex real-world       | real-world problem with  | complex real-world       | complex real-world       | _                        |
|                     | problems with numerous   | numerous criteria and    | problem with limited     | problem, or the impact   |                          |
| HS-ETS1-4           | criteria and constraints | constraints on           | criteria and constraints | on an interaction within |                          |
|                     | on interactions within   | interactions within and  | on interactions within   | or between two systems   |                          |
|                     | and between systems      | between systems          | and/or between systems   | relevant to the problem. |                          |
|                     | relevant to the problem. | relevant to the problem. | relevant to the problem. | *                        |                          |